

Supported by SRNSFG Grant Numb: MG_TG-18-1562

Applications of Mazurkiewicz type sets in the study of measurability properties of sets and functions

Mariam Beriashvili

I. Vekua Institute of Applied Mathematics Tbilisi State University

January 31, 2019

In 1914, S. Mazurkiewicz presented a transfinite constructions of a subset A of the Euclidian plane \mathbb{R}^2 , having the extraordinary property.

Definition

A set $M \subset \mathbf{R}^2$ is called Mazurkiewicz subset of \mathbf{R}^2 if $card(M \cap I) = 2$ for every straight line in \mathbf{R}^2 .

Let $M(\mathbf{R}^2)$ be a class of all nonzero σ -finite translation invariant measures on \mathbf{R}^2 .

Definition

A set $X \subset \mathbf{R}^2$ is called *negligible* with respect to $M(\mathbf{R}^2)$ if these two conditions are satisfied for X:

- there exists a measure $u \in M(\mathbf{R}^2)$ such that $X \in \mathit{dom}(
 u)$
- for any measure $\mu \in M(\mathbf{R}^2)$, the relation $X \in dom(\mu)$ implies the equality $\mu(X) = 0$

Definition

A set $Y \subset \mathbf{R}^2$ is called *absolutely negligible* with respect to $M(\mathbf{R}^2)$ if, for every measure $\mu \in M(\mathbf{R}^2)$, there exists a measure $\mu' \in M(\mathbf{R}^2)$ such that the relations

$$\mu'$$
extends $\mu, Y \in dom(\mu'), \mu'(Y) = 0$

hold true.

Let us remark that any R^2 -absolutely negligible set is also R^2 -negligible, but the converse assertion fails to valid.

Definition

A set $T \subset \mathbf{R}^2$ is called almost \mathbf{R}^2 -invariant if $card(T) = \mathbf{c}$ and

$$card((h+T) \triangle T) < \mathbf{c}$$

for each vector $h \in \mathbf{R}^2$

Definition

A se $W \subset \mathbf{R}^2$ is called λ_2 -thick in \mathbf{R}^2 if $B \cap W \neq \emptyset$ for every Borel set $B \subset \mathbf{R}^2$ with $\lambda_2(B) > 0$.

Let e be an arbitrary nonzero vector in \mathbf{R}^2 .

Definition

A set $A \subset \mathbf{R}^2$ is called

• *uinform* in direction *e* if $card(I \cap A) \leq 1$;

for any straight line $I \subset \mathbf{R}^2$ parallel to e.

The above definition immediately implies that, for any nonzero vector $e \in \mathbf{R}^2$, the Mazurkiewicz set is finite in direction e.

Let e be an arbitrary nonzero vector in \mathbf{R}^2 .

Definition

A set $A \subset \mathbf{R}^2$ is called

- *uinform* in direction *e* if $card(I \cap A) \leq 1$;
- finite in direction e if $card(I \cap A) < \omega$;

for any straight line $I \subset \mathbf{R}^2$ parallel to e.

The above definition immediately implies that, for any nonzero vector $e \in \mathbf{R}^2$, the Mazurkiewicz set is finite in direction e.

Let e be an arbitrary nonzero vector in \mathbf{R}^2 .

Definition

A set $A \subset \mathbf{R}^2$ is called

- *uinform* in direction *e* if $card(I \cap A) \leq 1$;
- finite in direction e if $card(I \cap A) < \omega$;
- countable in direction e if $card(I \cap A) \leq \omega$;

for any straight line $I \subset \mathbf{R}^2$ parallel to e.

The above definition immediately implies that, for any nonzero vector $e \in \mathbf{R}^2$, the Mazurkiewicz set is finite in direction e.

Theorem

If $M \subset \mathbf{R}^2$ is finite in some direction *I*, then *M* is negligible with respect to the class $M(\mathbf{R}^2)$.

Corollary

Every Mazurkiewicz set is negligible with respect to the same class of measures.

Every Hamel basis of the space \mathbf{R}^n is absolutely negligible subset of \mathbf{R}^n .

Independent, in the papers

- M. Bienias; S. Gab ; R. Rałowski; S. Zeberski *Two point sets with additional properties* Czechoslovak Mathematical Journal, Vol. 63 (2013), No. 4, 10191037
- A. Kharazisvili, On property of Hamel bases (in Russian) Bull. Acad. Sci. GSSR, 95, 2 (1979)

was proved next Lemma:

Lemma

There exists a Mazurkiewic subset of \mathbf{R}^2 which is a Hamel basis of \mathbf{R}^2 .

From above mentioned two Lemmas concludes:

Theorem

There exists a Mazurkiewicz subset X of \mathbb{R}^2 which is absolutely negligible with respect to the class $M(\mathbb{R}^2)$. So, for any measure $\mu \in M(\mathbb{R}^2)$, there exists a measure $\mu' \in M(\mathbb{R}^2)$, extending μ and such that $X \in dom(\mu')$ and $\mu'(X) = 0$

Let *e* be a nonzero vector in \mathbb{R}^2 and let *Z* be a subset of \mathbb{R}^2 countable in direction *e*. Then there exists a set $Z_0 \subset \mathbb{R}^2$ and a countable family $\{h_n : n < \omega\} \subset \mathbb{R}^2$ such that:

- Z_0 is uniform in direction *e*;
- $2 Z_0 \subset \cup \{h_n + Z_0 : n < \omega\}.$

Let G, A and B satisfy the following condition:

- **(**) *G* is a subgroup of the additive group $(\mathbf{R}^2, +)$ and $card(G) < \mathbf{c}$
- **2** A is a subset of \mathbf{R}^2 and $card(A) < \mathbf{c}$;
- **③** *B* is a λ_2 -measurable subset of \mathbf{R}^2 with $\lambda_2(B) > 0$.

Then there exists a point $z \in B$ such that:

 $\mathsf{i} (G+z) \cap A = \emptyset$

- ii for any two distinct points $a \in A$ and $a' \in A$, the line l(a, a') does not intersects the orbit G + z;
- iii for any two distinct points $x \in G + z$ and $y \in G + z$, the line l(x, y) does not intersect the set A.

Let Γ be any countably infinite non-collinear subgroup of \mathbb{R}^2 . There exists a Mazurkiewicz set Z such that $\Gamma + Z$ has the following property: for each countable family $\{h_m : m < \omega\} \subset \mathbb{R}^2$ the set

$$\cap \{h_m + \Gamma + Z : m < \omega\}$$

is λ_2 -thick in \mathbf{R}^2 and the equality

$$card(\cap \{h_m + \Gamma + Z : m < \omega\}) = \mathbf{c}$$

holds true.

Theorem

Let Z and Γ be as in least Lemma. There exists a measure ν on \mathbf{R}^2 such that:

- ν is an extension of λ_2 ;
- 2 ν is translation invariant

●
$$(\Gamma + Z) \in dom(\nu)$$
 and $\nu(\mathbf{R}^2 \setminus (\Gamma + Z)) = 0$.

In particular, the Mazurkiewicz set Z is not \mathbb{R}^2 -absolutely negligible in \mathbb{R}^2 .

In general, we can characterize the Mazurkiewicz sets with respect $M(\mathbf{R}^2)$ class:

• all Mazurkiewicz sets are negligible with respect $M(\mathbf{R}^2)$;

In general, we can characterize the Mazurkiewicz sets with respect $M(\mathbf{R}^2)$ class:

- all Mazurkiewicz sets are negligible with respect $M(\mathbf{R}^2)$;
- there exists a Mazurkiewicz set, which absolutely negligible with respect $M(\mathbf{R}^2)$;

In general, we can characterize the Mazurkiewicz sets with respect $M(\mathbf{R}^2)$ class:

- all Mazurkiewicz sets are negligible with respect $M(\mathbf{R}^2)$;
- there exists a Mazurkiewicz set, which absolutely negligible with respect $M(\mathbf{R}^2)$;
- there exists a Mazurkiewicz set, which is not-absolutely negligible with respect $M(\mathbf{R}^2)$.

References

- M. Bienias; S. Gab ; R. Rałowski; S. Zeberski *Two point sets with additional properties* Czechoslovak Mathematical Journal, Vol. 63 (2013), No. 4, 10191037
- A. Kharazisvili, On property of Hamel bases (in Russian) Bull. Acad. Sci. GSSR, 95, 2 (1979)
- A. Kharazisvili, *Measurability properties of Mazurkiewicz sets* Bulletin of TICMI, 20, 2, (2016)

Thank You for Your Attention